Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Hopping conductivity and magnetic-field-induced quantum hall-insulator transition in InAs/GaAs quantum dot layers

Identifieur interne : 000660 ( Russie/Analysis ); précédent : 000659; suivant : 000661

Hopping conductivity and magnetic-field-induced quantum hall-insulator transition in InAs/GaAs quantum dot layers

Auteurs : RBID : Pascal:03-0508946

Descripteurs français

English descriptors

Abstract

We have investigated the temperature dependence of resistance in the temperature range T = 0.07-300 K, the quantum Hall effect (qHe) and the Shubnikov-de Haas (SdH) effect in InAs/GaAs quantum dot structures in magnetic field up to 35 T. Two-dimensional Mott variable range hopping conductivity (VRHC) has been observed at low temperatures in samples with low carrier concentration. The length of localization correlates very well with the quantum dot cluster size obtained by Atomic Force Microscope (AFM). In samples with relatively high carrier concentration the transition qHe-insulator was observed.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:03-0508946

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Hopping conductivity and magnetic-field-induced quantum hall-insulator transition in InAs/GaAs quantum dot layers</title>
<author>
<name sortKey="Kulbachinskii, V A" uniqKey="Kulbachinskii V">V. A. Kulbachinskii</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Low Temperature Physics Department, Moscow State University</s1>
<s2>119899, Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lunin, R A" uniqKey="Lunin R">R. A. Lunin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Low Temperature Physics Department, Moscow State University</s1>
<s2>119899, Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rogozin, V A" uniqKey="Rogozin V">V. A. Rogozin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Low Temperature Physics Department, Moscow State University</s1>
<s2>119899, Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Golikov, A V" uniqKey="Golikov A">A. V. Golikov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Low Temperature Physics Department, Moscow State University</s1>
<s2>119899, Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kytin, V G" uniqKey="Kytin V">V. G. Kytin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Low Temperature Physics Department, Moscow State University</s1>
<s2>119899, Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zvonkov, B N" uniqKey="Zvonkov B">B. N. Zvonkov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Physicotechnical Research Institute, University of Nizhny Novgorod</s1>
<s2>603600, Nizhny Novgorod</s2>
<s3>RUS</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>603600, Nizhny Novgorod</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nekorkin, S M" uniqKey="Nekorkin S">S. M. Nekorkin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Physicotechnical Research Institute, University of Nizhny Novgorod</s1>
<s2>603600, Nizhny Novgorod</s2>
<s3>RUS</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>603600, Nizhny Novgorod</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Filatov, D O" uniqKey="Filatov D">D. O. Filatov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Physicotechnical Research Institute, University of Nizhny Novgorod</s1>
<s2>603600, Nizhny Novgorod</s2>
<s3>RUS</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>603600, Nizhny Novgorod</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="De Visser, A" uniqKey="De Visser A">A. De Visser</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Van der Waals-Zeeman Institute, University of Amsterdam</s1>
<s2>1018 XE Amsterdam</s2>
<s3>NLD</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>1018 XE Amsterdam</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">03-0508946</idno>
<date when="2003">2003</date>
<idno type="stanalyst">PASCAL 03-0508946 INIST</idno>
<idno type="RBID">Pascal:03-0508946</idno>
<idno type="wicri:Area/Main/Corpus">00C556</idno>
<idno type="wicri:Area/Main/Repository">00D361</idno>
<idno type="wicri:Area/Russie/Extraction">000660</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1017-2653</idno>
<title level="j" type="main">SPIE proceedings series</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atomic force microscopy</term>
<term>Binary compounds</term>
<term>Carrier density</term>
<term>Electrical conductivity</term>
<term>Electron localization</term>
<term>Experimental study</term>
<term>Gallium arsenides</term>
<term>Hopping conduction</term>
<term>Indium arsenides</term>
<term>Magnetooscillatory properties</term>
<term>Mott transition</term>
<term>Oscillations</term>
<term>Quantum Hall effect</term>
<term>Quantum dots</term>
<term>Semiconductor materials</term>
<term>Shubnikov-de Haas effect</term>
<term>Temperature dependence</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Conductivité électrique</term>
<term>Conduction saut</term>
<term>Dépendance température</term>
<term>Effet Hall quantique</term>
<term>Effet Shubnikov de Haas</term>
<term>Transition Mott</term>
<term>Densité porteur charge</term>
<term>Localisation électronique</term>
<term>Oscillation</term>
<term>Microscopie force atomique</term>
<term>Propriété magnétooscillatoire</term>
<term>Point quantique</term>
<term>Indium arséniure</term>
<term>Gallium arséniure</term>
<term>Semiconducteur</term>
<term>Composé binaire</term>
<term>Etude expérimentale</term>
<term>As Ga</term>
<term>GaAs</term>
<term>7363K</term>
<term>InAs</term>
<term>As In</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have investigated the temperature dependence of resistance in the temperature range T = 0.07-300 K, the quantum Hall effect (qHe) and the Shubnikov-de Haas (SdH) effect in InAs/GaAs quantum dot structures in magnetic field up to 35 T. Two-dimensional Mott variable range hopping conductivity (VRHC) has been observed at low temperatures in samples with low carrier concentration. The length of localization correlates very well with the quantum dot cluster size obtained by Atomic Force Microscope (AFM). In samples with relatively high carrier concentration the transition qHe-insulator was observed.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1017-2653</s0>
</fA01>
<fA05>
<s2>5023</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Hopping conductivity and magnetic-field-induced quantum hall-insulator transition in InAs/GaAs quantum dot layers</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Nanostructures : physics and technology : St. Petersburg, 17-21 June 2002</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>KULBACHINSKII (V. A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LUNIN (R. A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ROGOZIN (V. A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GOLIKOV (A. V.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KYTIN (V. G.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>ZVONKOV (B. N.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>NEKORKIN (S. M.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>FILATOV (D. O.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>DE VISSER (A.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>ALFEROV (Zhores I.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>ESAKI (Leo)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Low Temperature Physics Department, Moscow State University</s1>
<s2>119899, Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Physicotechnical Research Institute, University of Nizhny Novgorod</s1>
<s2>603600, Nizhny Novgorod</s2>
<s3>RUS</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Van der Waals-Zeeman Institute, University of Amsterdam</s1>
<s2>1018 XE Amsterdam</s2>
<s3>NLD</s3>
<sZ>9 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>International Society for Optical Engineering</s1>
<s2>Bellingham WA</s2>
<s3>USA</s3>
<s9>patr.</s9>
</fA18>
<fA20>
<s1>461-464</s1>
</fA20>
<fA21>
<s1>2003</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA26 i1="01">
<s0>0-8194-4824-9</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000117374191220</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2003 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>7 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>03-0508946</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>SPIE proceedings series</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We have investigated the temperature dependence of resistance in the temperature range T = 0.07-300 K, the quantum Hall effect (qHe) and the Shubnikov-de Haas (SdH) effect in InAs/GaAs quantum dot structures in magnetic field up to 35 T. Two-dimensional Mott variable range hopping conductivity (VRHC) has been observed at low temperatures in samples with low carrier concentration. The length of localization correlates very well with the quantum dot cluster size obtained by Atomic Force Microscope (AFM). In samples with relatively high carrier concentration the transition qHe-insulator was observed.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C63K</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Electrical conductivity</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Conduction saut</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Hopping conduction</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Effet Hall quantique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Quantum Hall effect</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Effet Shubnikov de Haas</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Shubnikov-de Haas effect</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Transition Mott</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Mott transition</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Transición Mott</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Densité porteur charge</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Carrier density</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Localisation électronique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Electron localization</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Localización electrónica</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Oscillation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Oscillations</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Propriété magnétooscillatoire</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Magnetooscillatory properties</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Propiedad magnetooscilatoria</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Indium arséniure</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>As Ga</s0>
<s4>INC</s4>
<s5>54</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>GaAs</s0>
<s4>INC</s4>
<s5>55</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>7363K</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>As In</s0>
<s4>INC</s4>
<s5>93</s5>
</fC03>
<fC07 i1="01" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s5>48</s5>
</fC07>
<fC07 i1="01" i2="3" l="ENG">
<s0>Inorganic compounds</s0>
<s5>48</s5>
</fC07>
<fN21>
<s1>335</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International symposium on nanostructures</s1>
<s3>St. Petersburg RUS</s3>
<s4>2002-06-17</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000660 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000660 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:03-0508946
   |texte=   Hopping conductivity and magnetic-field-induced quantum hall-insulator transition in InAs/GaAs quantum dot layers
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024